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The reduced development of COVID-19 for children compared to adults provides some tantalizing clues
on the pathogenesis and transmissibility of this pandemic virus. First, ACE2, theQ:6 severe acute respiratory
syndrome coronavirus 2 (SARS-Co-V-2) Receptor, is reduced in the respiratory tract in children. Second,
coronavirus associated with common colds in children may offer some protection, due to cross-reactive
humoral immunity and T cell immunity between common coronaviruses and SARS-CoV-2. Third, T helper
2 immune responses are protective in children. Fourth, surprisingly, eosinophilia, associated with T helper
2, may be protective. Fifth, children generally produce lower levels of inflammatory cytokines. Finally, the
influence of the downturn in the global economy, the impact of living in quarters among families who are
the most at risk, and factors including the openings of some schools, are considered. Those most disad-
vantaged socioeconomically may suffer disproportionately with COVID-19.

COVID-19 | children | SARS-CoV-2 |ACE2

Our childrenQ:7 , often; 8 a source of hope and optimism, have
provided one of the few encouraging notes, a “silver
lining” perhaps, in the dismal landscape of the current
pandemic. Children have thus far been relatively pro-
tected from developing severe COVID-19 pneumonia.
Understanding the basis for why children have generally
done better than adults provides important insights into
the pathogenesis of COVID-19, which may guide our
understanding of susceptibility to infection and may
provide further clues for therapeutics.

InQ:9 the United States, through April 2, 2020, two per-
cent of the reported COVID-19 cases were in children
less than 18 y of age, according to the Centers for Dis-
ease Control and Prevention (CDC) (1). However, as of
August 6, 2020, the American Academy of Pediatrics
reported 9.1% of all cases of COVID-19 were children in
states reporting cases by age. This figure represents
380,000 children in the United States, who have tested
positive for COVID-19 since the onset of the pandemic

(2). This increase over 4 mo is noteworthy. Whatever
the underlying reasons for this increase may be, this
trend serves to remind us that we are in an early
phase of understanding the impact of this virus
on children.

The CDC reported through the first week of August
2020 that, since March 1, 2020, there have been 576
pediatric COVID-19–associated hospitalizations, reported
through the CDC’s COVID-NET (3). Studies from China,
Italy, Spain, and North America all indicate that children
are less frequently hospitalized with COVID-19 than
adults (1–7). Evidence from the North American study
(6) shows that many of the children who did require
inpatient care due to acute COVID-19 had preexist-
ing medical problems, including conditions that
required long-term dependence on technologic
support for their underlying diseases, as well as
comorbidities that included obesity, immune sup-
pression, and cancer (6). Hispanic or Latino (Hispanic)
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children and non-Hispanic Black children were hospitalized at rates
approximately eightfold and fivefold higher than non-Hispanic White
children (3).

Although relatively rare, a multisystem inflammatory syndrome
in children (abbreviated MIS-C) has been reported from pediatric
departments in hospitals. A large majority of children with MIS-C
were positive, with PCR or with serologic testing, for severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) (7). It is unclear,
at this point, whether the pathogenesis reflects active infection, given

the variable presence of a positive PCR, but, more likely, the syn-
drome reflects predominately a postinfectious immune response.
The percentage of Black and Hispanic children with MIS-C was
higher than seen in the US population (8, 9) Thankfully, mortality re-
lated to this complication of SARS-CoV-2 has remained low (∼2%) (8).

Exploring why the pediatric population is generally far less likely
to develop COVID-19, even though their rate of infection is similar
to adults (10), may offer productive clues, enabling strategies for
targeting key pathogenic mechanisms in our efforts to contain and

Fig. 1. (1) Coronavirus associated with common colds in children may offer some protection due to cross-reactive T cell immunity and cross-
reactive antibody immunity between common coronaviruses and SARS-CoV-2, and due to reduced ACE2 in nasal mucosa of children. (2) Reduced
TMPRSS2 in children in type I alveolar cells (AEI). Reduced ACE2 in children in type II alveolar cells (AEII). (3) Protective Th2 immunity in children.
(4) Surprising protection from eosinophilia driven by Th2 cytokines including IL-4, IL-5 and IL-13 (for example childhood asthma). (5) Children
produce lower levels of inflammatory cytokines, IL-6 production increases with age.
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eradicate transmission of the virus. Here we review some of these
intriguing areas that may help illuminate why children might be
more resistant to serious outcomes following exposure to SARS-
CoV-2.

ACE2 Expression Is Lower in the Respiratory Tracts of
Children
Both the first SARS virus, SARS-CoV-1 discovered in 2003, and the
SARS-CoV-2 virus bind to angiotensin-converting enzyme 2 (ACE2)
(11, 12). The renin angiotensin system, originally known for its
critical role in blood pressure and hypertension, is also a critical
trigger of inflammation in various organ systems. ACE converts the
10-amino acid angiotensin I peptide into the 8-amino acid peptide,
known as angiotensin II. ACE2 then converts angiotensin II to the 7-
amino acid peptide known as angiontensin1–7. Angiotensin-II, when
binding to the angiotensin type (AT) 1 receptor, is proinflammatory
inmultiple organ systems including the lungs, the heart, the kidneys
(13, 14), and the brain (15). In contrast, angiotensin1–7 is antiin-
flammatory when it binds to the Mas receptor (14).

Coronaviruses are enveloped single-stranded RNA viruses that
cause enteric and respiratory tract infections in mammals and
birds that can range from mild to severe (16). After the spike
protein of SARS-CoV-2 binds to cells in the respiratory tract via
ACE2 (11–13, 17, 18), the virus enters the cell via proteolytic
cleavage involving two proteases, the transmembrane protease
serine 2 (TMPRSS2) and cathepsin L (CTSL). In recent studies (17,
18) researchers analyzed the expression of RNA in cells of the
respiratory tract, including nasal, airway, and lung parenchyma.
Both of these studies showed that expression of ACE2 increases
with age in the respiratory tract.

Wang et al. (17) analyzed gene expression in healthy lung tissue
from threeQ:10 different age groups ranging from approximately age
30 gestational weeks, approximately age 3 y, and approximately
age 30 y. They analyzed gene expression with two platforms at
single nuclear (sn) resolution, using snRNA sequencing (snRNA-seq)
and sn assay for transposase−accessible chromatin (snATAC-seq),
enabling the researchers to analyze specific genes and neighboring
(cis-) regions that control cell-type expression of gene modules in-
volved in processes like inflammation.

The respiratory tract has diverse cell types including alveolar
epithelial type 1 (AEI) cells, that are responsible for the air−blood
barrier in lung, and alveolar epithelial type 2 (AEII) cells that are
critical for secreting pulmonary surfactant (17, 18). The cellular
distribution of ACE2 and TMPRSS2 was distinct from CTSL. While
ACE2 and TMPRSS2 were primarily in AEI, AEII, and airway cells
such as club, ciliated, and basal cells, CTSL expression was found in
epithelial cells, mesenchymal cells, endothelial cells, and macro-
phages. It is the alveolar cells that are the anatomic site of acute
respiratory distress syndrome.

Wang et al. (17) noted “an increase in the proportion of alveolar
epithelial cells expressing ACE2 and TMPRSS2 in adult compared
to young lungs.” The investigators observed marked differences,
particularly in AE cells (17), with the percentage of ACE2+ AEII cells
increasing with age from the samples from those age 3 y upward to
the samples from those age 30 y. Similar findings were seen for the
TMPRSS2+ cells.

Analysis of the regulatory elements related to TMPRSS2+ cells
revealed modules related to activation of an immune response in
the lungs with a correlation related to increasing age. Noteworthy
immune factors included interferon (IFN) regulatory molecules for
both type 1 and type 2 IFNs, and signal transducer and activator
of transcription molecules involved in activating inflammatory

cytokine molecular pathways. Expression of TMPRSS2 was highest
in ciliated cells and AE1. Expression of TMPRSS2 increased with
age in mice and humans (19). For SARS-CoV-1, TMPRSS2 was
shown to promote viral spread, with its protease activity serving to
reduce viral recognition by neutralizing antibodies. Whether
TMPRSS2 plays a similar role in the spread of SARS-CoV-2 is a
subject of current investigation (19).

Muus et al. (18) analyzed gene expression in more than 4
million cells derived from 107 single-cell RNA expression studies,
including 22 studies focusing on datasets from the lung and air-
ways in both adults and children. In this large metaanalysis of
multiple RNA expression studies, the researchers compiled data
on cells from “nasal, airway, and lung parenchyma samples from
164 donors spanning fetal, childhood, adult, and elderly age
groups.” They found ACE2, TMPRSS2, and CTSL coexpressed at
low levels in alveolar cells of children compared to adults. The
researchers were able to confirm these results directly with triple
fluorescence in situ hybridization in specific cell types. They
concluded that there was “particularly low” ACE2 in the pediatric
samples (18).

Although the number of samples of young children was limited
in this study (18), the researchers found that “strikingly,
ACE2 expression is very low in normal lungs of newborns, in the
sample of the individual of 3 mo, and in the lungs of the 3-y-olds.”
These data were supported on a second platform known as
scTHS-Seq, single-cell chromatin accessibility by transposome
hypersensitive site sequencing, from human pediatric samples
with no lung disease, collected at day 1 of life, at 14 mo, at 3 y,
and at 9 y. They found “no signal was present at birth, it was low in
the 9-y-old and 3-y-old sample, and higher in the 14 mo-old.” The
researchers concluded that “these patterns may be important in
understanding why children are more resistant to COVID-19” (18).

There was an association of cells expressing both ACE2 and
TMPRSS2 that were more frequent with increasing age (18). Cells
expressing both TMPRSS2 and ACE2 in children are quite rare
(18). These double-positive cells were particularly notable for
expression of associated modules mediating viral and immune
responses. These double-positive cells were the likely locus where
an exuberant inflammatory response emanates. In these double-
positive cells in lung epithelium, expression of interleukin 6 (IL-6)
and IL-6R was increased. In so-called cytokine storms, where there
is overactivation of the immune system in the alveoli, activation of
these associated gene modules may underlie the pathophysio-
logic response (18). Monoclonal antibodies targeting inflamma-
tory cytokines including IL-6 and its receptor, as well as tumor
necrosis factor (TNF), are in therapeutic trials for cytokine storm
in COVID-19.

A reasonable conjecture might be that, if ACE2 and/or
TMPRSS2 expression is diminished in children, then viral infection
of respiratory cells by SARS-CoV-2 might be less likely at any given
viral load, and, additionally, there might be reduced expression of
associated inflammatory modules. It is known that, in healthy
children, there is an age-related increase in the production of IFN-γ
and TNF-α. For IL-6, there was a trend for lower IL-6 concentrations
in children below 2 y of age compared to older children (20). Thus,
children have a lowered propensity to transcribe inflammatory cy-
tokines in lung cells, and this may reduce the chance for an ex-
plosive immune reaction within the lungs resulting in the so-called
“cytokine storm.”
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Impact of Frequent Respiratory Infections in Childhood
and Virologic and Immunologic Interference
Numerous studies (21–23) show that children younger than 2 y of
age have five or more respiratory infections per year, and spend a
median of 44 d with mild upper respiratory illnesses (21). The
activation of adaptive immunity to common coronaviruses as well
as the activation of the innate immune system in the respiratory
tract may indeed provide some protection from microbial infec-
tion, including SARS-CoV-2. The frequent respiratory infections in
children may provide further clues to why children are resistant.
One line of reasoning is based on the phenomenon of viral in-
terference. A second line of reasoning is based on the concept of
immune interference.

Viral Interference.Often, children are infected by more than one
viral agent (21, 22). Viral interference is a well-known phenome-
non where one virus interferes with the replication of a second
virus (23). There is some evidence for coinfections in COVID-
19 patients, including coinfection with other coronaviruses (24,
25). Kim et al. (24) reported on both hospitalized and nonhospi-
talized cases from Northern California, including children. They
found more than 20% were positive for a second viral infection,
including infection with other coronaviruses. In contrast, Nowak
et al. (25) reported concurrent viral infection in only 3% of 1,204
SARS-CoV-2−positive patients from the New York metropolitan
area who were also tested with a respiratory virus panel or a test
for influenza and respiratory syncytial virus (RSV). In comparison, of
7,418 patients who tested negative for SARS- CoV-2, 845 were tested
with the samemultiplex panels, and 13%were positive for at least one
non-SARS-CoV-2 respiratory viral pathogen (25). The increase in at
least one non-SARS-CoV-2 viral pathogen in those who tested neg-
ative for SARS-CoV-2 may be due, in part, to viral interference.

An intriguing potential mechanism of resistance in children is
that common coronaviruses associated with mild illnesses like
colds and more severe illness like croup and bronchiolitis are as-
sociated with decreased expression of ACE2. For example, hu-
man coronavirus (HCoV) NL63, associated with common colds
and croup, induces a down-regulation of ACE2 (26). A reduction in
the viral receptor for SARS-CoV-2 therefore might help explain
why children who carry such viruses in their nose and upper por-
tions of their respiratory tracts are hospitalized less frequently than
adults. The first site of encounter in the respiratory tract for the
SARS-CoV-2 is in the nose. Investigators studying a cohort of
305 patients aged 4 y to 60 y found that “older children (10 y to
17 y old; n = 185), young adults (18 y to 24 y old; n = 46), and
adults (≥25 y old; n = 29) all had higher expression of ACE2 in the
nasal epithelium compared with younger children (4 y to 9 y old;
n = 45)” (27).

Despite diminished expression of ACE2 and/or TMPRSS2 in
children, “symptomatic infants have higher nasopharyngeal
SARS-CoV-2 viral loads at presentation but develop less severe
disease than older children and adolescents” (28). Moreover,
children less than 5 y old “with mild to moderate COVID-19 have
high amounts of SARS-CoV-2 viral RNA in their nasopharynx
compared with older children and adults” (29).

Taken together, these data imply that, although the viral load in
the nasopharynx may be higher in symptomatic children, overall,
children remain markedly more resistant to viral infection of the
lower respiratory tract leading to COVID-19. All this raises the
likelihood that, although children are, fortunately, less susceptible
to viral infection of the lungs, they can still serve as good dissemi-
nators of the SARS-CoV-2 virus that lurks in their nasal mucosa.

Detailed contact tracing from the Korean CDC revealed that
household contacts of COVID-19−positive children ages 10 y to
19 y were themost likely to become infected with the SARS-CoV-2
virus compared to household contacts of people of all other ages.
In contrast, household contacts of positive children aged 0 y to 9 y
were the least likely to become infected. Taken together, these
data need further substantiation, and might have implications for
spread of infection at home, in daycare, and in schools (30). These
data all emphasize that there is much to learn and to consider on
the spread from children in various environments. It will also be
important to stratify children by age, as infants, young children,
and adolescents have different propensities for communicating
viral infection.

Immunological Interference. IFNs, first described in Q:111957 by
Isaacs and Lindemann, bind to three distinct types of IFN recep-
tors (31). Mapping of immune response modules in the respiratory
tract shows that gene modules triggered by both type 1 and type
2 IFN responses are prominent (17, 18, 32, 33). The type 1 IFN
response is vital for viral killing. Type 1 IFN, however, stimulates
expression of the ACE2 receptor for the SARS-CoV-2 virus (33).
Thus, the virus drives an increase in type 1 IFN expression, which
then enhances expression of its receptor in the airway (33). In
contrast, coronaviruses that frequently infect children with com-
mon colds down-regulate ACE2 as described above (26). Thus,
children may benefit from a virtuous cycle with decreased
ACE2 leading to less induction of the IFN response, which, in turn,
further attenuates ACE2 expression. In contrast, adults suffer from
a vicious cycle in which increased ACE2 expression drives a more
robust IFN response.

The adaptive immune response to common coronavirus infec-
tions in Q:12children could provide some protection to SARS-CoV-2 since
they share considerable degrees of homology with coronaviruses
associated with the common cold. For example, spike proteins of the
common HCoV share 30% amino acid identity with these viruses
when one performs BLAST searches comparing these viruses. A de-
tailed mapping of known T and B cell epitopes on SARS-CoV-2
indicates that adaptive immune reactivity at the T cell and antibody
level targets not just the spike region but also other viral proteins (34).

A study in adult donors, age currently greater than 20 y, tested
whether there was detectable immunity to SARS-CoV-2 and to
common cold viruses attributed to coronavirus strains HCoV-
OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E. Donors were
recruited between 2015 and 2018, obviating exposure to SARS-
CoV-2. Unexposed donors had T cell immunity to both spike and
nonspike proteins in SARS-CoV-2 (34). The immunity may have
emanated from shared regions on the common cold virus and
SARS-CoV-2. Investigators tested immunity to one betacor-
ononavirus HCoV-OC43 and to one alphacoronavirus NL63, and
showed that these unexposed donors, n = 11, all Q:13had IgG to these
to the receptor-binding domain of these common cold viruses.
These nonexposed donors also had vigorous T cell responses to
both spike and nonspike proteins in SARS-CoV-2 (35). Additional
studies have been reported demonstrating widespread immunity
in healthy individuals to cross-reactive regions of SARS-CoV2 that
share peptide sequence homology with endemic coronaviruses
that cause common colds like HCoV-OC43, HCoV-229E, HCoV-
NL63, and HCoV-HKU1 (36, 37). Humoral, antibody immunity to
SARS-CoV2 is widely detected Q:14in individuals, including children,
who were not exposed to SARS-CoV2 (38). Immunity to earlier
exposures to both alpha and beta coronaviruses may thus
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engender protective humoral and cellular immunity for children
who are heavily exposed to these common cold viruses.

A publication (39) from the Department of Defense examining
the effect of the 2017–2018 seasonal influenza vaccine on respi-
ratory infections produced some intriguing results. Investigators
showed that the seasonal influenza immunization protected
against influenza, as it was intended to do, and protected against
some other respiratory viruses. However, they noted a small but
statistically significant increase in individuals testing positive to
metapneumovirus and coronaviruses. If future influenza vaccines,
for example the 2020–2021 seasonal influenza vaccine, also pro-
vide increased occurrence of common coronaviruses, this phe-
nomenon may actually afford some protection to SARS-CoV-2.
Recent studies show that those with immunity to common coro-
naviruses do have adaptive immunity to SARS-CoV-2 via the
mechanism of cross-reactive immunity (35–37).

There is some precedent for this phenomenon. Some immu-
nizations induce protection against other infections outside of the
intended target of the vaccine itself (40). A study from the Mayo
Clinic indicated that “polio, Hemophilus influenzae type-B (HIB),
measles-mumps-rubella (MMR), varicella, pneumococcal conju-
gate (PCV13), geriatric flu, and hepatitis A/hepatitis B (HepA-
HepB) vaccines administered in the past 1, 2, and 5 y are associ-
ated with decreased SARS-CoV-2 infection rates” (41).

Some antiviral vaccines like the MMR vaccine contain com-
ponents that have structural similarities with SARS-CoV-2 (42, 43).
There is a 29% amino acid sequence homology between the ADP
ribose-1-phosphatase domains of SARS-CoV-2 and rubella virus,
including surface-exposed conserved residues shared between
SARS-CoV-2 and the attenuated rubella virus in MMR (42). Pa-
tients with COVID-19 infection had raised levels of rubella IgG,
but did not have increased rubella IgM, nor did they have in-
creased levels of antibody to varicella zoster. The investigators
interpret these results as indicative of a cross-reactive recall anti-
body response, common to regions shared between rubella and
SARS-CoV-2, that may modulate the course of disease in COVID-
19 (42). Whether or not such an immune response is protective or
whether such an immune response might potentially enhance
disease are outcomes under investigation (42).

A Surprising Potential Protective Benefit of Th2
Immunity in Children
There are three major arms of the immune response characteristics
of human T helper cells, named Th1, Th2, and Th17 (33). The
Th1 arm described above is mediated by gamma IFN. The Th2 arm
is associated with allergic disease, andQ:15 is mediated by IL-4, IL-5, and
IL-13 (44). Sajuthi et al. (33) reported on gene expression studies on
695 children with asthma and healthy controls from the Genes-
Environment & Admixture in Latino Americans study, an ongoing
case-control study of asthma in Latino children and adolescents.
They found that TMPRSS2 is part of a mucus secretory network,
driven by Th2 inflammation via the actions of IL-13 (33). They found
that Th2 responses driven by IL-4, IL-5, and IL-13 “dramatically”
reducedACE2 in the respiratory tract and are associated with better
clinical outcomes with COVID-19, while the type 1 IFN response to
respiratory viruses increased ACE2 expression (33).

Th2 cytokines drive an increase of a cell type called the eosino-
phil in the blood and tissues. Eosinophilia is a hallmark of
Th2 inflammation in the airways, most notably in asthma (33, 45).
Sajuthi et al. (33) concluded that, at least “provisionally. . . T[h]2 in-
flammation may predispose individuals to experience better COVID-
19 outcomes through a decrease in airway levels of ACE2 that

override any countervailing effect from increased expression of
TMPRSS2.” It is indeed surprising that the Th2 immune type
associated Q:16with allergic disease including asthma, and with eosino-
philia, provides some protection to COVID-19 in children. These
findings from Sajuthi et al. (33) on 695 children and adolescents may
help explain why low levels of eosinophilia were seen in fatalities in
the elderly. Du et al. (45) reported that, in a study of 85 fatal COVID-
19 adult subjects, 81.2% exhibited very low levels of blood eosino-
phils. A Q:17connection between knowledge gained in studying children
(33) may help explain surprising outcomes in the elderly (45). This is
one of the unexpected benefits of investigations on the “extremes of
outcome” based on comparing children with the elderly populations
at highest risk.

Another independent verification of the possible protective
role of Th2 immunity was seen in a study on MIS-C. The very low
IgE levels seen in individuals with MIS-C indicate that they may
have lacked an adequate Th2 response to attenuate the increased
inflammation associated with this hyperinflammatory complica-
tion in children (46).

One important caveat about the potential protective effect of
eosinophilia comes from studies done 50 y ago in making a vac-
cine against RSV. “In 1967, infants and toddlers immunized with a
formalin-inactivated vaccine against RSV experienced an en-
hanced form of RSV disease characterized by high fever, bron-
chopneumonia, and wheezing when they became infected with
wild-type virus in the community. Hospitalizations were frequent,
and two immunized toddlers died upon infection with wild-type
RSV. The enhanced disease was initially characterized as a ‘peri-
bronchiolar monocytic infiltration with some excess in eosino-
phils’” (47). As new SARS-CoV2 vaccines are tested, the potential
appearance of Th2 immunity and eosinophilia must be scrutinized
through a lens of caution. Although Th2 responses appear to be
associated with some degree of protection to COVID-19, based
on the experience with development of a novel vaccine to RSV
50 y ago, the dreaded development of immune enhancement,
rather than immunization, must be assessed.

Unanswered Questions and Lessons to Learn
Although children have milder outcomes, thus far in the first few
months of the COVID-19 pandemic, much remains unknown (1–
10). The list of questions is considerable. We do not know, at this
point, whether children who are asymptomatic and who are major
carriers of virus can spread disease. When children leave a
“shelter-in-place” environment and return to school, how will this
impact more-vulnerable populations? Recent reports of outbreaks
at summer camps and schools raise serious concerns (48).

The emergence of MIS-C is particularly worrisome, and it is
unclear whether there will be long-term sequelae of SARS-CoV-2
infection in patients who were asymptomatic or mildly symp-
tomatic, in those who developed severe COVID-19, or in those
who subsequently developed MIS-C (5–9, 49). Other pandemics
have been associated with postinfectious phenomena including
postencephalitic Parkinson’s in the 1918 influenza pandemic (50).
However, the simultaneous emergence of MIS-C in this current
pandemic may allow elucidation of the pathophysiological un-
derpinnings of this COVID-19 syndrome with systemic manifes-
tations. Studies on MIS-C might provide insightful comparisons
with the Kawasaki syndrome that has some clinical similarities. It is
important to remember that intense inflammation activates the
coagulation cascade, driving it in a procoagulant direction. Co-
agulation disorders and thrombosis are seen in MIS-C (51, 52).
Autopsy studies on adults have revealed intense thrombotic
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microangiopathy with accompanying abnormalities in the coag-
ulation cascade (52). The nexus between the coagulation cascade
and the inflammatory response perhaps deserves increased atten-
tion for the possible therapeutic modalities that emerge from such a
perspective (53, 54). Increased research emphasis on the connection
between coagulation and inflammation is recommended.

The types of comorbidity underlying those at risk for COVID-
19 accentuate some major differences between adults and chil-
dren. Although children, like adults, with COVID-19 had a high
incidence of comorbid conditions, there were significant differ-
ences in the types of comorbidity. The most common comorbidity
in children, 40%, was those who were dependent on technolog-
ical support. These children on technological support had con-
genital conditions, including developmental delay and genetic
anomalies (4). In contrast, the comorbid conditions in adults are
often considered acquired, including hypertension, pulmonary
disease from smoking, and obesity. One comorbidity common to
adults and children is obesity. Obesity was considered a risk factor
in 48% of adults, while a lower percentage, 20.5%, of children with
COVID-19 were obese (6, 55).

We should remember that, although there is widespread relief
that children are hospitalized far less frequently than adults due to
COVID-19 infection, we do not know how the carrier status of
children affects their caregivers. We again have some relief that
studies on pregnant women who test positive for the SARS-CoV-2
virus show that they and their offspring have, so far, done well.
There appears to be negligible intrauterine transmission of dis-
ease, although larger studies are necessary to exclude this drea-
ded possibility (56).

While it seems that children are spared the most severe dis-
ease manifestations of COVID-19, they will undoubtedly be seri-
ously impacted in many domains, beyond the direct effects of the
pathogen. These potential negative impacts include how the
pandemic and social distancing from other children affect psycho-
logical health, how it impacts education, and how it affects body

weight and childhood obesity when getting sufficient exercise is
more difficult during shelter-in-place and safe-distancing restric-
tions. One wonders how closure of playgrounds may further impact
the obesity epidemic in children. Active programs to reduce
childhood obesity have been designed so that this comorbidity
does not further exacerbate the risk of COVID-19 in children (57).
How the pandemic has changed routine medical and dental care,
including immunizations to other preventable illnesses, needs to
be examined.

The economic crisis associated with the pandemic has its own
toll on children, as it is well known that deterioration in social
determinants of health has significant adverse effects on children
(https://www.cdc.gov/socialdeterminants/). Finally, sheltering in
place and social distancing may even impact the frequency of in-
fections typically seen in children (21–23). We shall learn, for ex-
ample, whether these frequent respiratory infections had provided
some benefit to children as they form their immune repertoires and
gain immune memory.

Dedicating adequate resources to understand the molecular
and immune underpinnings of COVID-19 in children may answer
many of these questions and potentially allow development of
novel therapeutic strategies for enhancement of host resistance to
viral infections. We might consider that we may learn as much or
more about this virus, from studying the relative resistance to
COVID-19 in children, as we will learn from studying the vastly in-
creased level of susceptibility in adults. There is still much to learn.

Data Availability. All study data are included in the article.
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